Please use this identifier to cite or link to this item:
http://archives.univ-biskra.dz/handle/123456789/3709
Title: | Necessary conditions for optimality for a diffusion with a non-smooth drift |
Authors: | Mezerdi Brahim |
Keywords: | Maximum principle adjoint process variational principle stable convergence |
Issue Date: | 26-Jun-2014 |
Abstract: | The purpose of this paper is to establish the necessary conditions for optimality of a controlled stochastic differential system without differentiability assumptions on the drift. We use an approximation argument in order to obtain a sequence of smooth control problems, and we apply Ekeland's variational principle to derive the associated adjoint processes. Passing at the Limit with respect to the stable convergence, we obtain a weak adjoint process and the inequality between Hamiltonians. This result is a generalisation of Kushner's maximum principle |
URI: | http://archives.univ-biskra.dz/handle/123456789/3709 |
Appears in Collections: | Publications Internationales |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Necessary conditions for optimality for a diffusion with a non-smooth drift.pdf | 50,09 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.