Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/3879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNacira Agram-
dc.date.accessioned2013-10-25T05:13:00Z-
dc.date.available2013-10-25T05:13:00Z-
dc.date.issued2013-10-25-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/3879-
dc.description.abstractWe prove maximum principles of optimal control of stochastic delay equations in infinite horizon. In the first paper, we establish first and second sufficient stochastic maximum principles as well as necessary conditions for that problem. We illustrate our results by an application to the optimal consumption rate from an economic quantity. In the second paper, we study maximum principle in infinite horizon of forward-backward stochastic differential equations with delay, and we apply the results to a recursive utility optimal consumption problem in financeen_US
dc.language.isofren_US
dc.subjectInfinite horizon; Optimal control; Stochastic delay equation; Lévy processes; Maximum principle; Hamiltonian; Adjoint process; Partial informationen_US
dc.titleContrôle optimal stochastique à horizon in nien_US
dc.typeThesisen_US
Appears in Collections:Mathématiques

Files in This Item:
File Description SizeFormat 
Nacira Thesis.pdf505,21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.