Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/56
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFRIHA, Souad-
dc.contributor.authorMANSOURI, Nora-
dc.contributor.authorTALEB AHMED, Abdelmalik-
dc.date.accessioned2013-12-21T21:41:33Z-
dc.date.available2013-12-21T21:41:33Z-
dc.date.issued2013-12-21-
dc.identifier.urihttp://archives.univ-biskra.dz/handle/123456789/56-
dc.description.abstractWhen modeling speech with traditional Gaussian Mixture Models (GMM) a major problem is that one need to fix a priori the number of GMMs. Using the infinite version of GMMs allows to overcome this problem. This is based on considering a Dirichlet process with a Bayesian inference via Gibbs sampling rather than the traditional EM inference. The paper investigates the usefulness of the infinite Gaussian modeling using the state of the art SVM classifiers.fr_FR
dc.language.isoenfr_FR
dc.subjectSpeaker Identification, Infinite GMM, SVM, Dirichlet Process, Gibbs Samplingfr_FR
dc.titleTHE INFINITE GAUSSIAN MODELS: AN APPLICATION TO SPEAKER IDENTIFICATIONfr_FR
dc.typeArticlefr_FR
Appears in Collections:CS N 12

Files in This Item:
File Description SizeFormat 
15_Friha.pdf157,45 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.