Please use this identifier to cite or link to this item: http://archives.univ-biskra.dz/handle/123456789/29334
Title: Asymptotic Behavior of Solutions of Some Viscoelastic Problems
Authors: Hamdi_Soumia
Keywords: PDEs; dynamicboundarycondition
Euler-Bernoullibeam;existenceand uniqueness ofsolutions;
Galerkinapproximationmethod;arbitrarydecay;
viscoelasticity; relaxation function.
Issue Date: 2024
Publisher: Université Mohamed Khider-Biskra
Abstract: The mainpurposeofthisthesisistoinvestigatetheexistenceanduniquenessofsolu- tions, aswellastheasymptoticbehaviorofsomeviscoelasticproblemsinone-dimensional space, precisely,thisworkaddressestheproblemofundesirablevibrationsandthecon- trol fattitudestabilizationofa exiblesatelliteduringthemaneuvers.Inviewofthis, viscoelasticmaterialsaresuggestedtoattenuateorsuppresstheunwantedvibrationsof a exiblesatellite.The exiblesatellitesystemconsistsofacentralrigidhubandtwo large symmetric exibleappendages.Mathematically,theproblemcanbemodeledby a setofpartialdi erentialequations(PDEs)takingintoaccountthedynamicboundary condition. OurresearchutilizesLyapunov'sdirectmethodtostudysomeviscoelasticsys- tems. Theresultsobtainedinthisthesisaimtoenhancemuchofthepreviousscienti c research.
Description: Partial differential equations
URI: http://archives.univ-biskra.dz/handle/123456789/29334
Appears in Collections:Mathématiques

Files in This Item:
File Description SizeFormat 
Hamdi_Soumia.pdf1,61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.