Please use this identifier to cite or link to this item:
http://archives.univ-biskra.dz/handle/123456789/29334
Title: | Asymptotic Behavior of Solutions of Some Viscoelastic Problems |
Authors: | Hamdi_Soumia |
Keywords: | PDEs; dynamicboundarycondition Euler-Bernoullibeam;existenceand uniqueness ofsolutions; Galerkinapproximationmethod;arbitrarydecay; viscoelasticity; relaxation function. |
Issue Date: | 2024 |
Publisher: | Université Mohamed Khider-Biskra |
Abstract: | The mainpurposeofthisthesisistoinvestigatetheexistenceanduniquenessofsolu- tions, aswellastheasymptoticbehaviorofsomeviscoelasticproblemsinone-dimensional space, precisely,thisworkaddressestheproblemofundesirablevibrationsandthecon- trol fattitudestabilizationofa exiblesatelliteduringthemaneuvers.Inviewofthis, viscoelasticmaterialsaresuggestedtoattenuateorsuppresstheunwantedvibrationsof a exiblesatellite.The exiblesatellitesystemconsistsofacentralrigidhubandtwo large symmetric exibleappendages.Mathematically,theproblemcanbemodeledby a setofpartialdi erentialequations(PDEs)takingintoaccountthedynamicboundary condition. OurresearchutilizesLyapunov'sdirectmethodtostudysomeviscoelasticsys- tems. Theresultsobtainedinthisthesisaimtoenhancemuchofthepreviousscienti c research. |
Description: | Partial differential equations |
URI: | http://archives.univ-biskra.dz/handle/123456789/29334 |
Appears in Collections: | Mathématiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Hamdi_Soumia.pdf | 1,61 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.