Please use this identifier to cite or link to this item:
Authors: Mustapha, Moumni
Achor BenSlama
Keywords: Noncommutativity
hydrogen-like atoms
proton radius
Issue Date: 31-Oct-2013
Publisher: World Scientific
Citation: Int. J. Mod. Phys. A 28, 1350139 (2013)
Abstract: We study the corrections induced by the theory of noncommutativity, in both space–space and space–time versions, on the spectrum of hydrogen-like atoms. For this, we use the relativistic theory of two-particle systems to take into account the effects of the reduced mass, and we use perturbation methods to study the effects of noncommutativity. We apply our study to the muon hydrogen with the aim to solve the puzzle of proton radius [R. Pohl et al., Nature466, 213 (2010) and A. Antognini et al., Science339, 417 (2013)]. The shifts in the spectrum are found more noticeable in muon H(μH) than in electron H(eH) because the corrections depend on the mass to the third power. This explains the discrepancy between μH and eH results. In space–space noncommutativity, the parameter required to resolve the puzzle θss≈(0.35 GeV)-2, exceeds the limit obtained for this parameter from various studies on eH Lamb shift. For space–time noncommutativity, the value θst≈(14.3 GeV)-2 has been obtained and it is in agreement with the limit determined by Lamb shift spectroscopy in eH. We have also found that this value fills the gap between theory and experiment in the case of μD and improves the agreement between theoretical and experimental values in the case of hydrogen–deuterium isotope shift.
ISSN: 0217-751X
Appears in Collections:Publications Internationales

Files in This Item:
File Description SizeFormat 
arXiv 1305.3508.pdf223,25 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.